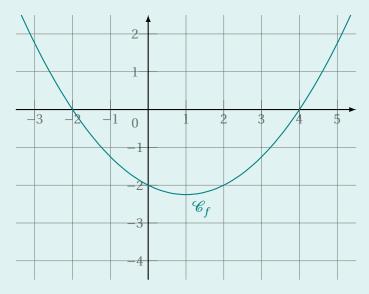
Nom: Classe:

OBSERVATIONS

NOTE

NOTE

NOTE

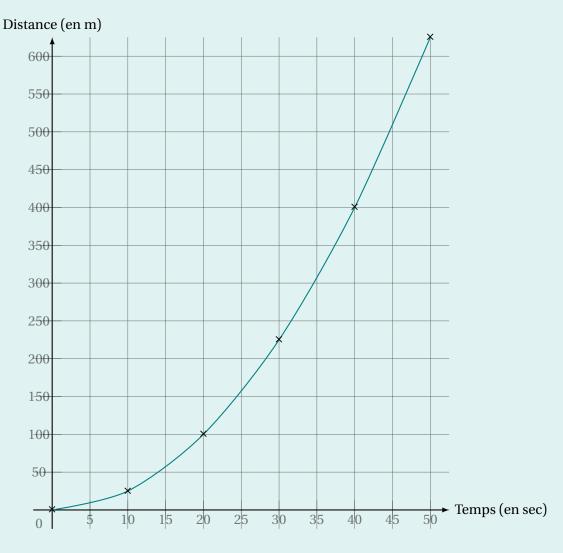

Il est toléré de travailler avec une personne de la classe, à condition de l'avoir indiqué sur la copie.

Il est interdit d'utiliser un logiciel d'intelligence artificiel pour répondre aux questions. Des explications seront demandées en cas de doute.

Tout manquement à l'une de ces règles entraînera l'attribution de la note minimale de zéro.

EXERCICE 1

On considère la fonction f définie pour tout $x \in \mathbb{R}$ par $f(x) = 0,25x^2 - 0,5x - 2$ dont on a tracé la courbe représentative ci-dessous.


- **1. a.** Tracer la droite (*d*) d'équation y = 0.5x 3.

.....

EXERCICE 2	
1. Soit $g: x \mapsto ax + b$ une fonction affine. Soit $x \in \mathbb{R}$. Que vaut $g'(x)$? Justifier avec un dessin.	
2. Soit h une fonction du second degré. On note (α,β) les coordonnées du sommet de la parabole \mathscr{C}_h	
Que vaut $h'(\alpha)$? Justifier avec un dessin.	

EXERCICE 3

Le graphique ci-dessous représente la distance parcourue en mètres par une voiture en fonction du temps, exprimé en secondes.

Pour cet exercice, on laissera les traits de construction apparents.

1.	a. Quelle est la vitesse de cette voiture sur l'ensemble de son parcours?
	b. Quelle est la vitesse moyenne de la voiture entre 20 sec et 30 sec?
	c. Quelle est la vitesse instantanée de la voiture à partir de 40 sec?
	d. En quelle valeur cette voiture a-t-elle la plus grande vitesse instantanée?

2. À 500 m du départ de la voiture se trouve un radar fixe. Sachant que la route est limitée à 80 km/h, l'automobiliste va-t-il se faire flasher par le radar?